Total Tayangan Halaman

Senin, 21 Februari 2011

PERENCANAAN DAN PERANCANGAN PRODUK

Perencanaan dan Perancangan Produk
Pendahuluan

Pertama-tama, kita tegaskan dulu : produk adalah barang yang dihasilkan dan dijual oleh perusahaan kepada konsumennya. Perencanaan dan perancangan produk adalah satu set kegiatan yang dimulai dari timbulnya persepsi bahwa ada kesempatan (opportunity) di pasar, dan berakhir dengan produksi, penjualan, dan pengiriman produk. Dalam seri tulisan ini, produk yag akan dibahas akan diberi batasan sebagai berikut : hasil rekayasa (engineered), diskrit, dan mempunyai bentuk fisik. Walaupun begitu, banyak bagian dari kuliah ini yang secara prinsip dapat diterapkan pada setiap produk secara umum.
Sehubungan dengan produk hasil rekayasa: yang dimaksud produk disini lebih dekat ke barang seperti alat pembangkit daya atau periferal komputer, dan jauh dari barang seperti majalah atau sweater.
Sehubungan dengan diskrit, artinya barang-barang seperti BBM, nilon atau kertas tidak relevan dalam kuliah ini.
Sehubungan dengan barang yang berbentuk fisik, maka produk jasa dan software tidak termasuk.

Apa tolok ukur keberhasilan suatu produk?
Ukuran utama keberhasilan satu produk adalah laba yang dapat diperoleh perusahaan dari penjualan produk tersebut. Walaupun begitu, variabel-variabel berikut sangat berpengaruh pada kemampu-labaan dari satu produk.
Mutu produk. Seberapa bagus produk hasil pengembangan itu? Apakah dapat memenuhi kebutuhan konsumen? Apakah produknya kokoh dan dapat diandalkan (reliable)? Apakah mutu produk ini tergambarkan dalam tingginya pangsa pasar, dan atau tingginya harga yang mau dibayar oleh konsumen?
Biaya produk. Berapa biaya manufaktur dari produk yang dipilih untuk diproduksi? Dalam biaya ini termasuk biaya yang dikeluarkan untuk mesin-mesin dan peralatan serta biaya inkremental untuk memproduksi setiap unit produk. Biaya produk akan menentukan berapa laba yang dapat diperoleh perusahaan, berdasarkan volume penjualan tertentu, dan berdasarkan harga jualnya.
Waktu yang diperlukan untuk pengembangan. Seberapa cepat tim pengembangan produk dapat menyelesaikan tugasnya. Durasi waktu pengembangan akan menentukan seberapa cepat perusahaan dapat merespon situasi persaingan dan perubahan teknologi. Dari segi finansial, ini juga berarti memberi gambaran seberapa cepat perusahaan dapat menutup biaya pengembangan.
Biaya yang diperlukan untuk pengembangan. Berapa biaya yang harus dibayar oleh perusahaan untuk pengembangan produk? Biasanya biaya pengembangan merupakan fraksi yang cukup signifikan dalam investasi.
Kapabilitas pengembangan. Apakah tim pengembangan dan perusahaan mempunyai kemampuan yang lebih baik dalam mengembangkan produk di masa yang akan datang, setelah mempunyai pengalaman menjalankan proyek di masa lalu?

Siapa yang merancang dan mengembangkan produk?
Pengembangan produk merupakan kegiatan antar disiplin yang memerlukan kontribusi hampir dari semua fungsi dalam perusahaan. Walaupun begitu dalam tim pengembangan ada tiga fungsi berikut selalu berperan sangat sentral dalam pengembangan produk.
Pemasaran. Fungsi marketing berperan sebagai mediator dalam interaksi antara perusahaan dan konsumen. Pemasaran biasanya memfasilitasi kegiatan identifikasi produk-produk yang prospektif, pendefinisian segmentasi pasar, dan identifikasi kebutuhan konsumen.
Perancangan atau disain (design). Fungsi disain memainkan peran yang utama dalam menentukan bentuk fisik dari produk, sedemikian sehingga hasilnya memenuhi kebutuhan knsumen semaksimal mungkin. Dalam kaitan ini, fungsi disain mencakup engineering design (mekanikal, elektrikal, software dsb) dan industrial design (estetika, ergonomi, interface pengguna).
Manufaktur. Fungsi manufaktur terutama bertanggung jawab dalam merancang dan mengoperasikan sistem produksi untuk menghasilkan produk. Dalam definisi umum, fungsi manufaktur seringkali mencakup pembelian, distribusi dan instalasi.

Berapa lama dan berapa biayanya?
Sedikit sekali jenis produk yang pengembangannya di bawah 1 tahun, kebanyakan 3 – 5 tahun, beberapa ada yang bisa 10 tahun. Tabel dalam Gambar 2 memperlihatkan perbandingan aspek-aspek dalam pengembangan lima produk, berikut skala usaha dalam aspek tersebut pada tiap-tiap produk.
Biaya pengembangan produk sangat dipengaruhi oleh jumlah orang dalam tim dan durasi waktu yang diperlukan untuk pengembangan tersebut.
Di luar biaya pengembangan harus ditambahkan biaya untuk invetasi dalam mesin dan peralatan, yang jumlahnya bisa sebesar biaya pengembangan. Semua biaya tersebut dapat dikelompokkan ke dalam fixed cost.

Tantangan dalam Pengembangan Produk
Dalam usaha pengembangan produk, ada perusahaan yang memperoleh hasil, dan ada pula yang tidak. Berikut ini adalah tantangan yang harus dihadapi oleh tim pengembang produk.
Trade-off. Usaha untuk mencapai suatu fitur dari produk, dapat mengorbankan fitur yang lain, atau membuat biaya manufaktur meningkat.
Dinamis. Teknologi berubah, selera konsumen berubah, pesaing juga berusaha membuat produk baru, situasi ekonomi makro berubah. Sulit untuk membuat keputusan dalam situasi yang berubah.
Detil. Perubahan kecil pada disain dapat meningkatkan atau menurunkan biaya secara signifikan. Makin rumit produk yang dikembangkan, makin banyak keputusan yang harus dibuat dalam perancangannya.
Tekanan waktu. Kalau tersedia banyak waktu, tim pengembang akan lebih mudah dalam menghadapi tantangan-tantangan ini. Pada kenyataannya, tim pengembang harus membuat keputusan secara cepat, bahkan sebelum informasi terkumpul secara lengkap.
Kebutuhan dana. Mengembangkan, memproduksi dan memasarkan produk baru memerlukan biaya yang besar. Agar biaya tersebut dapat tertutup kembali, maka produk harus dapat diterima oleh konsumen dan biaya produksinya tidak tinggi.
Untuk sebagian orang, pengembangan produk adalah menarik justru karena banyak tantangannya. Berikut ini adalah atribut-atribut lain disamping tantangan, yang dapat membuat kegiatan mengembangkan produk menjadi menarik.
- Suasana kreatif yang terbangun dalam tim.
- Terjadinya kepuasan karena telah membuat produk untuk masyarakat
- Keragaman disiplin dalam tim pengembangan
- Semangat tim yang terbangun

Selasa, 28 Desember 2010

Fakta Lingkungan tentang produksi kertas:

> 1 ton kertas = 400 rim = 200.000 lembar
> Untuk memproduksi 1 ton kertas, dibutuhkan 3 ton kayu dan 98 ton bahan baku lainnya.
> Setiap jam, dunia kehilangan 1.732,5 hektar hutan karena ditebang untuk dijadikan bahan baku kertas.
> Untuk memproduksi 3 lembar kertas dibutuhkan 1 liter air.

Selama proses produksi pun, kertas menghasilkan berbagai macam limbah. Diantaranya :

1. Dalam memproduksi 1 ton kertas, dihasilkan gas karbondioksida sebanyak kurang lebih 2,6 ton. Jumlah ini setara dengan gas buang yang dihasilkan sebuah mobil selama 6 bulan.
2. Dalam memproduksi 1 ton kertas, dihasilkan kurang lebih 72.200 liter limbah cair dan 1 ton limbah padat.
3. Setelah kertas dibuang, kertas ini akan terurai. Proses terurainya kertas menghasilkan gas metana. Dan gas metana juga merupakan penyebab pemanasan global. Malahan gas metana ini 20 kali lebih berbahaya dibanding gas karbondioksida, dalam hal menyebabkan naiknya suhu global.

Bahaya Pencemaran Logam Berat Dalam Air



Air merupakan kebutuhan pokok makhluk hidup. Bila manusia, hewan, dan tumbuhan kekurangan air, maka akan mati. Permasalahan saat ini adalah kualitas air terutama untuk kebutuhan (mandi, mencuci, minum, dan sebagainya) di kota-kota besar di Indonesia masih memprihatinkan.

Kepadatan penduduk, limbah industri, tata ruang yang salah dan tingginya eksploitasi sumber daya air sangat berpengaruh pada kualitas air. Selain itu, banyak orang yang membuang sampah, kotoran maupun limbah ke sungai. Bahkan, ada cara lain membuang limbah berbahaya dengan menanam di kedalaman beberapa meter. Hal inilah yang menyebabkan semakin memburuknya kualitas air.

Salah satu hasil penelitian yang dilakukan oleh Athena (1996) menunjukkan 41.5 % sampel air di Jakarta mengandung Merkuri (Hg) berlebih, 25.4 % sampel air di Bogor mengandung Kadmium (Cd) berlebih, dan 41.1 % sampel air di Bogor mengandung Timbal (Pb) berlebih. Kandungan logam berat pada air minum Bogor dan Jakarta lebih tinggi dibandingkan Bekasi dan Tangerang.

Indikator yang digunakan untuk mendeteksi pencemaran air adalah cemaran logam berat didalamnya. Disebut logam berat berbahaya karena umumnya memiliki rapat massa tinggi (5 gr/cm3) dan sejumlah konsentrasi kecil dapat bersifat racun dan berbahaya. Di antara semua unsur logam berat, Hg menduduki urutan pertama dalam hal sifat racunnya, kemudian diikuti oleh logam berat antara lain Cd, Ag, Ni, Pb, As, Cr, Sn, dan Zn.

Logam berat merupakan komponen alami tanah. Elemen ini tidak dapat didegradasi maupun dihancurkan. Logam berat dapat masuk ke dalam tubuh manusia melalui makanan, air minum, atau udara. Logam berat seperti tembaga, selenium, atau seng dibutuhkan tubuh manusia untuk membantu kinerja metabolisme tubuh. Akan tetapi, dapat berpotensi menjadi racun jika konsentrasi dalam tubuh berlebih. Logam berat menjadi berbahaya disebabkan sistem bioakumulasi, yaitu peningkatan konsentrasi unsur kimia didalam tubuh mahluk hidup.

Adanya Timbal (Pb) dalam peredaran darah dan otak dapat menyebabkan gangguan sintesis hemoglobin darah, gangguan neurologi (susunan syaraf), gangguan pada ginjal, sistem reproduksi, penyakit akut atau kronik sistem syaraf, dan gangguan fungsi paru-paru. Selain itu, dapat menurunkan IQ pada anak kecil jika terdapat 10-20 myugram/dl dalam darah.

Kadmium (Cd) jika berakumulasi dalam jangka waktu yang lama dapat menghambat kerja paru-paru, bahkan mengakibatkan kanker paru-paru, mual, muntah, diare, kram, anemia, dermatitis, pertumbuhan lambat, kerusakan ginjal dan hati, dan gangguan kardiovaskuler. Kadmium dapat pula merusak tulang (osteomalacia, osteoporosis) dan meningkatkan tekanan darah. Gejala umum keracunan Kadmium adalah sakit di dada, nafas sesak (pendek), batuk – batuk, dan lemah.

Merkuri (Hg) dapat berakumulasi dan terbawa ke organ-organ tubuh lainnya, menyebabkan bronchitis, sampai rusaknya paru-paru. Gejala keracunan Merkuri tingkat awal, pasien merasa mulutnya kebal sehingga tidak peka terhadap rasa dan suhu, hidung tidak peka bau, mudah lelah, gangguan psikologi (rasa cemas dan sifat agresif), dan sering sakit kepala. Jika terjadi akumulasi yang tinggi mengakibatkan kerusakan sel-sel saraf di otak kecil, gangguan pada luas pandang, kerusakan sarung selaput saraf dan bagian dari otak kecil. Turunan oleh Merkuri (biasanya etil merkuri) pada proses kehamilan akan nampak setelah bayi lahir yang dapat berupa cerebral palsy maupun gangguan mental. Sedangkan keracunan Merkuri yang akut dapat menyebabkan kerusakan saluran pencernaan, gangguan kardiovaskuler, kegagalan ginjal akut maupun shock.

Arsenik (As) dalam tubuh dapat mengganggu daya pandang mata, hiperpigmentasi (kulit menjadi berwarna gelap), hiperkeratosis (penebalan kulit), pencetus kanker, infeksi kulit (dermatitis). Selain itu, dapat menyebabkan kegagalan fungsi sumsum tulang, menurunnya sel darah, gangguan fungsi hati, kerusakan ginjal, gangguan pernafasan, kerusakan pembuluh darah, varises, gangguan sistem reproduksi, menurunnya daya tahan tubuh, dan gangguan saluran pencernaan.

Chromium (Cr) dalam tubuh dapat berakibat buruk terhadap sistem saluran pernafasan, kulit, pembuluh darah, dan ginjal. Dampak kandungan logam berat memang sangat berbahaya bagi kesehatan. Namun, kita dapat mencegahnya dengan meningkatkan kesadaran untuk ikut serta melestarikan sumber daya hayati serta menjaga kesehatan baik untuk diri sendiri maupun keluarga. Salah satu cara sederhana untuk menjaga kesehatan adalah dengan mendeteksi kondisi air yang kita gunakan sehari-hari, terutama kebutuhan untuk minum. Jika kondisi air Anda sudah terdeteksi, maka akumulasi logam berat dalam tubuh dapat kita cegah.

Deteksi air minum Anda sejak dini!!!!

Identifikasi dan Karakteristik Limbah B3

I. Pendahuluan

limbah-b31Dalam pengeolaan limbah B3, identifikasi dan karakteristik limbah B3 adalah hal yang penting dan mendasar. Didalam pengelolaan limbah B3, prinsip pengelolaan tidak sama dengan pengendalian pencemaran air dan udara yang upaya pencegahanna di poin source sedangkan pengelolaan limbah B3 yaitu from cradle to grave. Yang dimaksud dengan from cradle to grave adalah pencegahan pencemaran yang dilakukan dari sejak dihasilkannya limbah B3 sampai dengan di timbun / dikubur (dihasilkan, dikemas, digudangkan / penyimpanan, ditransportasikan, di daur ulang, diolah, dan ditimbun / dikubur). Pada setiap fase pengelolaan limbah tersebut ditetapkan upaya pencegahan pencemaran terhadap lingkungan dan yang menjadi penting adalah karakteristik limbah B3 nya, hal ini karena setiap usaha pengelolaannya harus dilakukan sesuai dengan karakteristiknya.




Menurut PP 18 Tahun 1999 tentang pengelolaan limbah B3, pengertian limbah B3 adalah sisa suatu usaha dan atau kegiatan yang mengandung bahan berbahaya dan / atau beracun yang karena sifat dan / atau konsentrasinya dan / atau jumlahnya, baik secara langsung dapat mencemarkan dan / atau merusak lingkungan hidup, dan / atau membahayakan lingkungan hidup, kesehatan, keangsungan hidup manusia serta makhluk hidup lainnya.

Dari definisi diatas, semua limbah yang sesuai dengan definisi tersebut dapat dikatakan sebagai limbah B3 kecuali bila limbah tersebut dapat mentaati peraturan tentang pengendalian air dan atau pencemaran udara. Misalnya limbah cair yang mengandung logam berat tetapi dapat diolah dengan water treatment dan dapat memenuhi standat effluent limbah yang dimaksud maka, limbah tersebut tidak dikatakan sebagai limbah B3 tetapi dikategorikan limbah cair yang pengawasannya diatur oleh Pemerintah.

II. Identifikasi Limbah B3

Alasan diperlukannya identifikasi limbah B3 adalah:

1. mengklasifikasikan atau menggolongkan apakah limbah tersebut merupakan limbah B3 atau bukan.
2. menentukan sifat limbah tersebut agar dapat ditentukan metode penanganan, penyimpanan, pengolahan, pemanfaatan atau penimbunan.
3. menilai atau menganalisis potensi dampak yang ditimbulkan tehadap lingkngan, atau kesehatan manusia dan makhluk hidup lainnya

Tahapan yang dilakuka dalam identifikas limbah B3 adalah sebagai berikut:

1. Mencocokkan jenis limbah dengan daftar jenis limbah B3 sebagaimana ditetapkan pada lampiran 1 (Tabel 1,2, dan 3) PP 85/1999.
2. Apabila tidak termasuk dalam jenis limbah B3 seperti lampiran tersebut, maka harus diperiksa apakah limbah tersebut memiliki karakteristik: mudah meledak, mudah terbakar, beracun, bersifat reaktif, menyebabkan infeksi dan atau bersifat infeksius.
3. apabila kedua tahap telah dijalankan dan tidak termasuk dalam limbah B3, maka dilakukan uji toksikologi.

III. Karakteristik Limbah B3

Selain berdasarkan sumbernya (Lampiran 1,2 dan 3 PP 85/1999), suatu limbah dapat diidentifikasi sebagai limbah B3 berdasarkan uji karakteristik. Karakteristik limbah B3 meliputi:

- mudah meledak

- mudah terbakar

- bersifat reaktif

- beracun

- menyebabkan infeksi

- dan bersifat korosif

Suatu limbah diidentifikasikan sebagai limbah B3 berdasarkan karakteristiknya apabila dalam pengujiannya memiliki satu atau lebih kriteria atau sifat karakteristik limbah B3.

PENGOLAHAN LIMBAH

Agroindustri atau industri pengolahan hasil pertanian merupakan salah industri yang menghasilkan air limbah yang dapat mencemari lingkungan. Bagi industri-industri besar, seperti industri pengolahan kelapa sawit, teknologi pengolahan limbah cair yang digunakan mungkin sudah memadai, namun tidak demikian bagi industri kecil atau sedang. Namun demikian, mengingat tingginya potensi pencemaran yang ditimbulkan oleh air limbah yang tidak dikelola dengan baik maka diperlukan pemahaman dan informasi mengenai pengelolaan air limbah secara benar.




Pengelolaan limbah adalah kegiatan terpadu yang meliputi kegiatan pengurangan (minimization), segregasi (segregation), penanganan (handling), pemanfaatan dan pengolahan limbah. Dengan demikian untuk mencapai hasil yang optimal, kegiatan-kegiatan yang melingkupi pengelolaan limbah perlu dilakukan dan bukan hanya mengandalkan kegiatan pengolahan limbah saja. Bila pengelolaan limbah hanya diarahkan pada kegiatan pengolahan limbah maka beban kegiatan di Instalasi Pengolahan Air Limbah akan sangat berat, membutuhkan lahan yang lebih luas, peralatan lebih banyak, teknologi dan biaya yang tinggi. Kegiatan pendahuluan pada pengelolaan limbah (pengurangan, segregasi dan penanganan limbah) akan sangat membantu mengurangi beban pengolahan limbah di IPAL.


Tren pengelolaan limbah di industri adalah menjalankan secara terintergrasi kegiatan pengurangan, segregasi dan handling limbah sehingga menekan biaya dan menghasilkan output limbah yang lebih sedikit serta minim tingkat pencemarnya. Integrasi dalam pengelolaan limbah tersebut kemudian dibuat menjadi berbagai konsep seperti: produksi bersih (cleaner production), atau minimasi limbah (waste minimization).

Secara prinsip, konsep produksi bersih dan minimasi limbah mengupayakan dihasilkannya jumlah limbah yang sedikit dan tingkat cemaran yang minimum. Namun, terdapat beberapa penekanan yang berbeda dari kedua konsep tersebut yaitu: produksi bersih memulai implementasi dari optimasi proses produksi, sedangkan minimasi limbah memulai implementasi dari upaya pengurangan dan pemanfaatan limbah yang dihasilkan.


Produksi Bersih menekankan pada tata cara produksi yang minim bahan pencemar, limbah, minim air dan energi. Bahan pencemar atau bahan berbahaya diminimalkan dengan pemilihan bahan baku yang baik, tingkat kemurnian yang tinggi, atau bersih. Selain itu diupayakan menggunakan peralatan yang hemat air dan hemat energi. Dengan kombinasi seperti itu maka limbah yang dihasilkan akan lebih sedikit dan tingkat cemarannya juga lebih rendah. Selanjutnya limbah tersebut diolah agar memenuhi baku mutu limbah yang ditetapkan.


Strategi produksi bersih yang telah diterapkan di berbagai negara menunjukkan hasil yang lebih efektif dalam mengatasi dampak lingkungan dan juga memberikan beberapa keuntungan, antara lain

a). Penggunaan sumberdaya alam menjadi lebih efektif dan efisien;

b). Mengurangi atau mencegah terbentuknya bahan pencemar;

c). Mencegah berpindahnya pencemaran dari satu media ke media yang lain;

d). Mengurangi terjadinya risiko terhadap kesehatan manusia dan lingkungan;

e). Mengurangi biaya penaatan hukum;

f). Terhindar dari biaya pembersihan lingkungan (clean up);

g). Produk yang dihasilkan dapat bersaing di pasar internasional;

h). Pendekatan pengaturan yang bersifat fleksibel dan sukarela.


Minimasi limbah merupakan implementasi untuk mengurangi jumlah dan tingkat cemaran limbah yang dihasilkan dari suatu proses produksi dengan cara pengurangan, pemanfaatan dan pengolahan limbah.

Pengurangan limbah dilakukan melalui peningkatan atau optimasi efisiensi alat pengolahan, optimasi sarana dan prasarana pengolahan seperti sistem perpipaan, meniadakan kebocoran, ceceran, dan terbuangnya bahan serta limbah.


Pemanfaatan ditujukan pada bahan atau air yang telah digunakan dalam proses untuk digunakan kembali dalam proses yang sama atau proses lainnya. Pemanfaatan perlu dilakukan dengan pertimbangan yang cermat dan hati-hati agar tidak menimbulkan gangguan pada proses produksi atau menimbulkan pencemaran pada lingkungan.

Setelah dilakukan pengurangan dan pemanfaatan limbah, maka limbah yang dihasilkan akan sangat minimal untuk selanjutnya diolah dalam instalasi pengolahan limbah.


Pada kegiatan pra produksi dapat dilakukan pemilihan bahan baku yang baik, berkualitas dan tingkat kemunian bahannya tinggi. Saat produksi dilakukan, fungsi alat proses menjadi penting untuk menghasilkan produk dengan konsumsi air dan energi yang minimum, selain itu diupayakan mencegah adanya bahan yang tercecer dan keluar dari sistem produksi.

Dari tiap tahapan proses dimungkinkan dihasilkan limbah. Untuk mempermudah pemanfaatan dan pengolahan maka limbah yang memiliki karakteristik yang berbeda dan akan menimbulkan pertambahan tingkat cemaran harus dipisahkan. Sedangkan limbah yang memiliki kesamaan karekteristik dapat digabungkan dalam satu aliran limbah. Pemanfaatan limbah dapat dilakukan pada proses produksi yang sama atau digunakan untuk proses produksi yang lain.

Limbah yang tidak dapat dimanfaatkan selanjutnya diolah pada unit pengolahan limbah untuk menurunkan tingkat cemarannya sehingga sesuai dengan baku mutu yang ditetapkan. Limbah yang telah memenuhi baku mutu tersebut dapat dibuang ke lingkungan. Bila memungkinkan, keluaran (output) dari instalasi pengolahan limbah dapat pula dimanfaatkan langsung atau melalui pengolahan lanjutan.


Pengolahan limbah adalah upaya terakhir dalam sistem pengelolaan limbah setelah sebelumnya dilakukan optimasi proses produksi dan pengurangan serta pemanfaatan limbah. Pengolahan limbah dimaksudkan untuk menurunkan tingkat cemaran yang terdapat dalam limbah sehingga aman untuk dibuang ke lingkungan.

Limbah yang dikeluarkan dari setiap kegiatan akan memiliki karakteristik yang berlainan. Hal ini karena bahan baku, teknologi proses, dan peralatan yang digunakan juga berbeda. Namun akan tetap ada kemiripan karakteristik diantara limbah yang dihasilkan dari proses untuk menghasilkan produk yang sama.

Karakteristik utama limbah didasarkan pada jumlah atau volume limbah dan kandungan bahan pencemarnya yang terdiri dari unsur fisik, biologi, kimia dan radioaktif. Karakteristik ini akan menjadi dasar untuk menentukan proses dan alat yang digunakan untuk mengolah air limbah.


Pengolahan air limbah biasanya menerapkan 3 tahapan proses yaitu pengolahan pendahuluan (pre-treatment), pengolahan utama (primary treatment), dan pengolahan akhir (post treatment). Pengolahan pendahuluan ditujukan untuk mengkondisikan alitan, beban limbah dan karakter lainnya agar sesuai untuk masuk ke pengolahan utama. Pengolahan utama adalah proses yang dipilih untuk menurunkan pencemar utama dalam air limbah. Selanjutnya pada pengolahan akhir dilakukan proses lanjutan untuk mengolah limbah agar sesuai dengan baku mutu yang ditetapkan.


Terdapat 3 (tiga) jenis proses yang dapat dilakukan untuk mengolah air limbah yaitu: proses secara fisik, biologi dan kimia. Proses fisik dilakukan dengan cara memberikan perlakuan fisik pada air limbah seperti menyaring, mengendapkan, atau mengatur suhu proses dengan menggunakan alat screening, grit chamber, settling tank/settling pond, dll.

Proses biologi deilakukan dengan cara memberikan perlakuan atau proses biologi terhadap air limbah seperti penguraian atau penggabungan substansi biologi dengan lumpur aktif (activated sludge), attached growth filtration, aerobic process dan an-aerobic process. Proses kimia dilakukan dengan cara membubuhkan bahan kimia atau larutan kimia pada air limbah agar dihasilkan reaksi tertentu.

Untuk suatu jenis air limbah tertentu, ketiga jenis proses dan alat pengolahan tersebut dapat diaplikasikan secara sendiri-sendiri atau dikombinasikan.

Pilihan mengenai teknologi pengolahan dan alat yang digunakan seharusnya dapat mempertimbangkan aspek teknis, ekonomi dan pengelolaannya.
Pertanian Oleh Petani Untuk Pertanian

Pengolahan Limbah Industri Pengolahan Kayu

Adanya limbah dimaksud menimbulkan masalah penanganannya yang selama ini dibiarkan membusuk, ditumpuk dan dibakar yang kesemuanya berdampak negatif terhadap lingkungan sehingga penanggulangannya perlu dipikirkan. Salah satu jalan yang dapat ditempuh adalah memanfaatkannya menjadi produk yang bernilai tambah dengan teknologi aplikatif dan kerakyatan sehingga hasilnya mudah disosialisasikan kepada masyarakat.

Hasil evaluasi menunjukkan beberapa hal berprospek positif sebagai contoh teknologi aplikatif dimaksud dapat diterapkan secara memuaskan dalam mengkonversi limbah industri pengolahan kayu menjadi arang serbuk, briket arang, arang aktif, arang kompos dan soil conditioning.

Penerapan teknologi aplikatif dan kerakyatan ini dapat dikembangkan menjadi skala besar (pilot dan komersial) baik secara teknis maupun ekonomis. Lebih lanjut keberhasilan pemanfaatan limbah dapat memberi manfaat antara lain dari segi kehutanan dan industri kayu dapat mengurangi ketergantungan terhadap bahan baku konvensional (kayu) sehingga mengurangi laju penebangan/kerusakan hutan dan mengoptimalkan pemakaian kayu serta menghemat pengeluaran bulanan keluarga dan meningkatkan kesuburan tanah. Namun demikian mengubah pola kebiasaan masyarakat tidak mudah, diperlukan proses yang panjang.



I. PENDAHULUAN

Keberadaan dan peran industri hasil hutan utamanya kayu di Indonesia dewasa ini menghadapi tantangan yang cukup berat berkaitan dengan adanya ketimpangan antara kebutuhan bahan baku industri dengan kemampuan produksi kayu secara lestari. Bila memperhatikan kondisi hutan alam yang makin menurun berarti makin langkanya bahan baku kayu, serta besarnya tantangan berbagai aspek khususnya di sektor kehutanan (lingkungan, ekolabel, perdagangan karbon) maka perlu dilakukan perubahan mendasar dalam kebijakan pembangunan kehutanan, salah satunya dengan mengedepankan peran inovasi teknologi yang lebih berpihak kepada masyarakat khususnya industri kecil, meningkatkan efisiensi pengolahan hasil hutan serta memaksimalkan pemanfaatan kayu dan limbah biomassa yang mengarah kepada zero waste (Anonim, 2000).

Untuk industri besar dan terpadu, limbah serbuk kayu gergajian sudah dimanfaatkan menjadi bentuk briket arang dan arang aktif yang dijual secara komersial. Namun untuk industri penggergajian kayu skala industri kecil yang jumlahnya mencapai ribuan unit dan tersebar di pedesaan, limbah ini belum dimanfaatkan secara optimal, seperti industri penggergajian di Jambi yang berjumlah 150 buah yang kesemuanya terletak ditepi sungai Batanghari limbah kayu gergajian yang dihasilkan dibuang ke tepi sungai tersebut sehingga terjadi proses pendangkalan dan pengecilan ruas sungai.

Beberapa teknologi alternatif untuk memanfaatkan limbah biomassa ini melalui teknologi yang aplikatif menjadi produk yang lebih bermanfaat sehingga mudah untuk disosialisasikan ke masyarakat pengguna. Teknologi tersebut di antaranya adalah teknologi pembuatan arang dari serbuk gergajian kayu dengan sistem kontinyu yang dirancang dapat dibongkar pasang (knock down) dan dapat dipindah-pindah (portable) dengan biaya yang relatif murah. Arang serbuk yang dihasilkan dapat diolah lebih lanjut menjadi produk yang lebih mempunyai nilai ekonomi seperti arang aktif, briket arang, serat karbon, arang kompos dan dapat digunakan secara langsung sebagai (soil conditioning). Sedangkan produk samping yang sudah bukan menjadi sampingan lagi yaitu cairan destilat dan ter dapat digunakan sebagai bahan pengawet, isektisida dan obat. Ditinjau dari aspek energi, briket arang ini dapat digunakan sebagai sumber energi alternatif pengganti minyak tanah dan kayu bakar yang harganya semakin naik, sehingga dapat menghemat pengeluaran biaya bulanan.

Selain faktor internal, perlu diperhatikan juga faktor eksternal yang tidak kalah pentingnya seperti persaingan di pasar global yang memerlukan dukungan teknologi yang dapat meningkatkan nilai tambah, peningkatan produktivitas dan mutu produk. Kandungan teknologi (inovasi teknologi) harus dapat ditingkatkan sejalan dengan makin kompetitifnya perdagangan komoditas hasil hutan. Tanpa inovasi teknologi kelangsungan hidup industri hasil hutan tidak dapat terus berjalan apabila hanya mengandalkan potensi sumber daya alam (Anonim, 2000).



II. POTENSI LIMBAH BIOMASSA

Di Indonesia ada tiga macam industri kayu yang secara dominan mengkonsumi kayu dalam jumlah relatif besar, yaitu: penggergajian, vinir/kayu lapis, dan pulp/kertas. Sebegitu jauh limbah biomassa dari industri tersebut telah dimanfaatkan kembali dalam proses pengolahannya. sebagai bahan bakar guna melengkapi kebutuhan energi industri vinir/kayu lapis dan pulp/kertas. Yang menimbulkan masalah adalah limbah penggergajian yang kenyataannya dilapangan masih ada yang di tumpuk sebagian dibuang ke aliran sungai (pencemaran air), atau dibakar secara langsung (ikut menambah emisi karbon di atmosfir). Produksi total kayu gergajian Indonesia mencapai 2.6 juta m3 per tahun (Forestry Statistics of Indonesia 1997/1998). Dengan asumsi bahwa jumlah limbah yang terbentuk 54.24 persen dari produksi total (Martawijaya dan Sutigno 1990), maka dihasilkan limbah penggergajian sebanyak 1.4 juta m3 per tahun; angka ini cukup besar karena mencapai sekitar separuh dari produksi kayu gergajian.

III. ALTERNATIF PEMANFAATAN

Limbah industri pengolahan kayu terdiri dari limbah yang dihasilkan industri kayu lapis, pengergajian dan pengerjaan kayu yang berupa potongan ujung, sebetan, sisa kupasan, tatal dan serbuk gergajian.

A. Arang Serbuk dan Arang bongkah

Khusus untuk pembuatan arang dari serbuk gergajian kayu, teknologi yang digunakan berbeda dengan cara pembuatan arang sistem timbun dan kiln bata. Teknologi yang digunakan dalam proses pembuatan arang dari serbuk gergaji kayu ini adalah dengan menggunakan drum yang dimodifikasi dan dilengkapi dengan lubang udara di sekeliling badan drum dan cerobong asap dibagian tengah badan drum. Rendemen arang serbuk gergaji yang dihasilkan dengan cara ini sebesar 15 – 20 %. kadar karbon terikat sebesar 50 – 72 kal/g dan nilai kalor arang antara 5800 – 6300 kal/g. Mengingat cara ini kurang efektif bila ditinjau dari lamanya proses pembuatan arang serbuk yang memerlukan waktu lebih dari 10 jam dengan hasil yang tidak terlalu banyak, maka dibuat teknologi baru untuk mengatasi kekurangan cara drum tersebut. Teknologi ini dirancang dengan konstruksi yang terbuat dari plat besi siku yang dapat dibongkar pasang (sistem baut) dan ditutup dengan lembaran seng yang juga menggunakan sistem baut. Dalam satu hari (9 jam) dapat mengarangkan serbuk sebanyak 150 – 200 kg yang menghasilkan rendemen arang antara 20 – 24 %. Kadar air 3,49 %, kadar abu 5,19 %, kadar zat terbang 28,93 % dan kadar karbon sebesar 65,88 %. Arang serbuk gergaji yang dihasilkan dapat dibuat atau diolah lebih lanjut menjadi briket arang, arang aktif, dan sebagai media semai tanaman. Biaya untuk membuat kiln semi kontinyu ini adalah sebesar Rp. 2000.000,-

Untuk limbah sebetan dan potongan ujung dapat dibuat arang dengan menggunakan tungku kubah yang terbuat dari batu bata yang dipelester dengan tanah liat dan dilengkapi dengan alat penampung atau mendinginkan asap yang keluar dari cerobong sehingga didapatkan cairan ter dan destilat yang dapat diaplikasikan lebih lanjut. Di Thailand cairan wood vinegar ini merupakan produk utama dalam hal pembuatan arang yang sebelumnya merupakan produk samping karena harga jualnya tinggi yanitu sebesar 50 Bath/L sedangkan untuk arangnya hanya berharga 4 Bath/kg. Dari kapasitas tungku sebesar 4,5 ton dihasilkan cairan destilat sebanyak 150 liter dan arang sebanyak 800 kg (Sujarwo, 2000). Hasil penelitian yang dilakukan oleh Nurhayati (2000) menunjukkan bahwa tungku dengan kapasitas 445 kg menghasilkan arang sebanyak 60,6 kg dan cairan destilat 75,5 kg. Adapun biaya pembuatan tungku bata yang diplester dengan tanah liat yang dilengkapi dengan alat proses pendinginan sebesar Rp. 4000.000 (Nurhayati, 2000).

B. Arang aktif

Arang aktif adalah arang yang diolah lebih lanjut pada suhu tinggi sehingga pori-porinya terbuka dan dapat digunakan sebagai bahan adsorben. Proses yang digunakan sebagian besar menggunakan cara kimia di mana bahan baku direndam dalam larutan, CaCl2, MgCl2, ZnCl2 selanjutnya dipanaskan dengan jalan dibakar pada suhu 5000C. Hasilnya menunjukkan bahwa kualitas arang aktif dalam hal ini besarnya daya serap terhadap yodium memenuhi standar SII karena daya serapnya lebih dari 20 %. Sesuai dengan perkembangan teknologi dan persyaratan standar yang makin ketat serta isu lingkungan, teknologi ini sudah tidak memungkinkan untuk dikembangkan lebih lanjut terutama untuk pemakaian bahan pengaktif ZnCl2 yang dapat mengeluarkan gas klor pada saat aktivasi.

Mensikapi kasus tersebut di atas, telah dilakukan perbaikan teknologi pembuatan arang aktif dengan cara oksidasi gas pada suhu tinggi dan kombinasi antara cara kimia dengan menggunakan H3PO4 sebagai bahan pengaktif dan oksidasi gas. Hasil penelitian Pari (1996) menyimpulkan bahwa arang aktif dari serbuk gergajian sengon yang dibuat secara kimia dapat digunakan untuk menarik logam Zn, Fe, Mn, Cl, PO4 dan SO4 yang terdapat dalam air sumur yang terkontaminas dan juga dapat digunakan untuk menjernihkan air limbah industri pulp kertas (Pari, 1996). Arang aktif yang diaktivasi dengan bahan pengaktif NH4HCO3 menghasilkan arang aktif yang memenuhi Standar Jepang dengan daya serap yodium lebih dari 1050 mg/g dan rendemen arang aktifnya sebesar 38,5 % (Pari, 1999).

Pada tahun 1986 berdiri sebuah pabrik arang aktif di Kalimantan yang membuat arang aktif dari limbah serbuk gergajian kayu dengan kapasitas produksi 3000 ton/th. Sampai sekarang terdapat dua buah pabrik pengolahan arang aktif yang menggunakan serbuk gergajian kayu sebagai bahan baku utamanya. Kualitas arang aktif yang dihasilkan memenuhi SNI karena daya serap yodiumnya lebih dari 750 mg/g, tetapi belum memenuhi standar Jepang. Harga jual arang aktif bervariasi antara Rp 6.500 – Rp 15.000/kg tegantung pada kualitas yang diinginkan. Untuk arang aktif buatan Jerman harganya mencapi Rp 65.000/0,5 kg.

C. Briket arang

Briket arang adalah arang yang diolah lebih lanjut menjadi bentuk briket (penampilan dan kemasan yang lebih menarik) yang dapat digunakan untuk keperluan energi sehari-hari. Pembuatan briket arang dari limbah industri pengolahan kayu dilakukan dengan cara penambahan perekat tapioka, di mana bahan baku diarangkan terlebih dahulu kemudian ditumbuk, dicapur perekat, dicetak (kempa dingin) dengan sistem hidroulik manual selanjutnya dikeringkan. Hasil penelitian Hartoyo, Ando dan Roliadi (1978) menyimpulkan bahwa kualitas briket arang yang dihasilkan setaraf dengan briket arang buatan Inggris dan memenuhi persyaratan yang berlaku di Jepang karena menghasilkan kadar abu dan zat mudah menguap yang rendah serta tingginya kadar karbon terikat dan nilai kalor. Selain itu hasil penelitian Sudrajat (1983) yang membuat briket arang dari 8 jenis kayu dengan perekat campuran pati dan molase menyimpulkan bahwa makin tinggi berat jenis kayu, karepatan briket arangnya makin tinggi pula. Kerapatan yang dihasilkan antara 0,45 – 1,03 g/cm3 dan nilai kalor antara 7290 – 7456 kal/g.

Pembuatan briket arang yang dilakukan sekarang adalah bahan baku yang digunakan adalah sudah langsung dalam bentuk arang serbuk sehingga proses penggilingan dan pengayakan bahan baku yang dilakukan sebelumnya dapat dihilangkan. Proses selanjutnya adalah penambahan perekat tapioka dan pengepresan seperti pembuatan briket arang sebelumnya. Untuk membuat alat cetak briket sistem manual hidroulik dengan jumlah lubang 24 buah diperlukan biaya Rp 18.000.000,-

Pada tahun 1990 berdiri pabrik briket arang tanpa perekat di Jawa Barat dan Jawa Timur yang menggunakan serbuk gergajian kayu sebagai bahan baku utamanya. Proses pembuatan briket arangnya berbeda dengan cara yang disebutkan di atas. Bahan baku serbuk gergajian kayu dikeringkan selanjutnya dibuat briket kayu dengan sistem ulir berputar dan berjalan sambil dipanaskan kemudian diarangkan dalam kiln bata. Kualitas briket arang yang dihasilkan mempunyai nilai kalor kurang dari 7000 kal/g yaitu sebesar 6341 kal/g dan kadar karbon terikatnya sebesar 74,35 %. Namun demikian studi yang dilaksanakan di Jawa Barat menunjukkan bahwa pabrik briket arang dengan kapasitas sebanyak 260 kg briket arang/hari dapat menguntungkan. Di pasar swalayan sekarang dapat dibeli briket arang dari kayu dengan dengan harga jual Rp 12.000/2,5 kg.

Apabila briket arang dari serbuk gergajian ini dapat digunakan sebagai sumber energi alternatif baik sebagai pengganti minyak tanah maupun kayu bakar maka akan dapat terselamatkan CO2 sebanyak 3,5 juta ton untuk Indonesia, sedangkan untuk dunia karena kebutuhan kayu bakar dan arang untuk tahun 2000 diperkirakan sebanyak 1,70 x 109 m3 (Moreira (1997) maka jumlah CO2 yang dapat dicegah pelepasannya sebanyak 6,07 x 109 ton CO2/th.

D. Energi.

Jenis limbah yang digunakan sebagai sumber energi dapat berupa potongan ujung, sisa pemotongan kupasan, serutan dan seruk gergajian kayu yang kesemuanya digunakan untuk memanaskan ketel uap. Pada industri kayu lapis keperluan pemakaian bahan bakar untuk ketel uap sebesar 19,7 % atau 40 % dari total limbah yang dihasilkan.

Untuk industri pengeringan papan skala industri kecil proses pengeringannya dilakukan secara langsung dengan membakar limbah sebetan atau potongan ujung, panas yang dihasilkan dengan bantuan blower dialirkan ke dalam suatu ruangan yang berisi papan yang akan dikeringkan. Hasil penelitian Nurhayati (1991) menyimpulkan bahwa untuk mengeringkan papan sengon sebanyak 10260 kg berat basah pada kadar air 161,04 % menjadi 5220 kg papan pada kadar air 6,58 % selama 6 hari menghabiskan limbah sebanyak 3433 kg. Teknologi lainnya adalah proses konversi kayu menjadi bahan bakar melalui proses gasifikasi. Hasil penelitian Nurhayati dan Hartoyo (1992) menyimpulkan bahwa limbah kayu kamper dapat dikonversi menjadi bahan bakar dengan sistem gasifikasi fluidized bed yang menghasilkan nilai kalor gas sebesar 7,106 MJ/m3 dengan komposisi gas H2 = 5,6 %; CO = 11,77 %, CH4 = 3,99 %; C2H4 = 4,34 %, C2H6 = 0,21 %, N2 = 57,69 % O2 = 0,40 % dan CO2 = 15,71 %.

E. Soil conditioning

Penggunaan arang baik yang berasal dari limbah eksploitasi maupun yang berasal dari industri pengolahan kayu untuk soil conditioning, merupakan salah satu alternatif pemanfaatan arang selain sebagai sumber energi. Secara morfologis arang memiliki pori yang efektif untuk mengikat dan menyimpan hara tanah. Oleh sebab itu aplikasi arang pada lahan-lahan terutama lahan miskin hara dapat membangun dan meningkatkan kesuburan tanah, karena dapat meningkatkan beberapa fungsi antara lain: sirkulasi udara dan air tanah, pH tanah, merangsang pembentukan spora endo dan ektomikoriza, dan menyerap kelebihan CO2 tanah. Sehingga dapat meningkatkan produktifitas lahan dan hutan tanaman.

Hasil penelitian pendahuluan Gusmailina et. al. (1999), menunjukkan bahwa pemberian arang dan arang aktif bambu sebagai campuran media tanam dapat meningkatkan persentase pertumbuhan baik pada tingkat semai maupun anakan (seedling) dari Eucalyptus urophylla. pemberian arang serbuk gergaji dan arang sarasah dapat meningkatkan pertumbuhan anakan Acacia mangium dan Eucalyptus citriodora lebih dari 30 % dibanding tanpa pemberian arang, begitu juga pemberian arang di lapangan dapat meningkatkan diameter batang tanaman E. urophylla. Sedangkan untuk tanaman pertanian seperti cabe (Capsicum annum) penambahan arang bambu sebanyak 5 % dan arang sekam sebanyak 10 % dapat meningkatkan persentasi pertumbuhan tinggi tanaman menjadi 11 %. Namun demikian akan lebih baik bila pada waktu penanaman, arang yang ditambahkan dicampur dengan kompos. Hasil sementara menunjukkan dengan penambahan arang serbuk gergajian kayu dan kompos serbuk menghasilkan diameter pohon yang lebih besar (7,9 cm) dibanding tanpa pemberian kompos.

F. Kompos dan Arang Kompos

Serbuk gergaji merupakan salah satu jenis limbah industri pengolahan kayu gergajian. Alternatif pemanfaatan dapat dijadikan kompos untuk pupuk tanaman. Hasil penelitian Komarayati (1996) menunjukkan bahwa pembuatan kompos serbuk gergaji kayu tusam (Pinus merkusii) dan serbuk gergaji kayu karet (Hevea braziliensis) dengan menggunakan activator EM4 dan pupuk kandang menghasilkan kompos dengan nisbah C/N 19,94 dan rendemen 85 % dalam waktu 4 bulan. Selain itu Pasaribu (1987) juga memanfaatkan serbuk gergaji sengon (Paraserianthes falcataria) sebagai bahan baku untuk kompos. Kompos yang dihasilkan mempunyai nisbah C/N 46,91 dengan rendemen 90 % dalam waktu 35 hari. Hasil penelitian pemberian kompos serbuk dan sarasah pohon karet dapat meningkatkan pertumbuhan Eucalyptus urophylla 40-50 % dalam waktu 5 bulan dibanding tanpa pemberian kompos.

Penelitian dengan menggunakan residu fermentasi padat anaerobik dapat meningkatkan pertumbuhan tinggi dan diameter anakan Eucalyptus urophylla sampai 11,65 cm dan 1,24 cm (Gusmailina et al, 1990) sedangkan untuk anakan Paraserianthes falcataria sebesar 9,33 cm dan 0,11 cm (Komarayati et al, 1992 dan Komarayati, 1993).



IV. PENERAPAN

Hasil-hasil penelitian tersebut tidak akan berarti tanpa disebarluaskan kepada masyarakat pengguna. Untuk hal ini perlu dilakukan serangkaian ujicoba, maupun alih teknologi kepada masyarakat dengan tujuan selain untuk mempertanggung jawabkan hasil penelitian kepada masyarakat yang telah membiaya kegiatan penelitian ini melalui penerimaan pajak yang disetorkan kepada negara juga untuk memberikan bekal ilmu pengetahuan dan teknologi yang pada akhirnya masyarakat dapat membuat dan mengolah sendiri bahan-bahan yang belum termanfaatkan, minimal untuk kebutuhan sendiri sehingga dapat menghemat pengeluaran biaya bulanan. Hasil sosialisasi yang dilakukan oleh Hendra dan Pari (2001) penambahan arang-kandang dapat meningkatkan panen cabe 2 kali lebih besar dibanding tanpa memakai arang kandang dan tanah bekas pakai masih tetap subur karena arangnya masih tersedia dan tidak lapuk. Hasil sosialisasi yang dilakukan oleh Gusmailina dkk (2002) mengenai aplikasi arang kompos dari serbuk gergajian kayu sebagai media tanaman cabe dalam kantung plastik di pekarangan rumah dapat menghemat pengeluaran keluarga sebanyak Rp 50.000/bulan, sehingga dapat digunakan untuk keperluan lain terutama untuk pendidikan. Namun demikian untuk mengubah kebiasaan yang biasa dilakukan oleh masyarakat tidak mudah, diperlukan waktu yang panjang seperti mengubah kebiasaan menggunakan kayu bakar dengan arang/briket arang dan mengubah kebiasaan menggunakan pupuk sintetis kepada pupuk organik.



V. KESIMPULAN

Potensi bahan baku kayu yag belum termanfaatkan adalah sebesar 2,03 juta m3/th untuk industri pengolahan kayu. Limbah dari industri pengolahan kayu dapat dimanfaatkan menjadi arang serbuk dengan teknologi kiln semi kontinyu, briket arang, arang aktif, arang kompos, soil conditioning Hasil sosialisasi arang kompos dapat menghemat pengeluaran bulanan keluarga dan lebih menyuburkan lahan tanah. Namun demikian sulit untuk mengubah pola budaya yang sudah biasa dilakukan oleh masyarakat



DAFTAR PUSTAKA

1. Anonim. 1967. Japanese Industrial Standard. Testing method for powdered activated carbon. JIS K-1474. Japanese Standard Association, Tokyo.
2. Anonim. 1995. Arang aktif teknis. Standar Nasional Indonesia (SNI) 06-3730-1995 , Jakarta.
3. Anonim. 2000. Sambutan Mentri Kehutanan dan perkebunan pada seminar nasional kehutanan Masa depan industri hasil hutan (kayu) di Indonesia. Departemen Kehutanan dan Pekebunan, Jakarta
4. Anonim. 1995. Penilaian rendemen dan produktivitas pabrik kayu lapis PT Erna Djuliawati di Sanggau, Kalimantan Barat. Kerjasama antara P3HHSEK dengan PT Erna Djuliawati, Bogor.
5. Anonim. 1997. Forestry statistic of Indonesia. Secretary General of Forestry. Ministry of Forestry and Estate Crops, Bureau of Planning, Jakarta.



http://www.roycollections.co.cc/index.php?option=com_content&view=article&id=25:pengolahan-limbah-industri-pengolahan-kayu&catid=3:umum&Itemid=404